
How	to	install	the	android	sdk	and	run	adb	shell

http://urseghy.com/c3?utm_term=how+to+install+the+android+sdk+and+run+adb+shell

I	am	using	Android	Studio	2.1.2.	I	had	same	requirement	as	OP.	Though	above	two	answer	seemed	to	help	everyone,	it	did	not	work	for	me	.	I	am	sharing	what	worked	for	me.	Go	to	main	menu/Run/Edit	Configuration	.	Select	app	under	Android	Application	on	the	left.This	should	open	multi-tabbed	pane	.	Select	General	tab	(would	be	default),	click
green	+	sing	at	the	bottom	(below	text	Before	launch:	Gradle	-awake	...).	A	drop	down	will	appear,	select	Gradle-aware-make	option.	Another	text	box	will	pop	up.	enter	:app:uninstallAll	in	this	text	box	.	(You	can	use	ctrl	+	space	to	use	autocomplete	todetermine	right	target	without	typing	everything	.	And	also	helps	you	choose	the	right	app	name
that	is	avaiable	for	you).	and	set	apply/ok.	Relaunch	your	app.	Note	:	Every	time	you	launch	your	app	now	,	this	new	target	will	try	to	uninstall	your	app	from	your	emulator	or	device.	So	if	your	testing	device	is	not	available,	your	launc	will	probably	fail	while	uninstalling	but	will	continue	to	start	your	emulator.	So	Either	start	your	emulator	first,	or	re-
lauch	after	first	fail	again	(as	first	launch	will	start	emulator	though	uninstall	fails).	Stay	organized	with	collections	Save	and	categorize	content	based	on	your	preferences.	You	can	set	environment	variables	for	Android	Studio	and	the	command-line	tools	that	specify	things	like	where	the	SDK	is	installed	and	where	user-specific	data	is	stored.	This
page	describes	the	most	commonly	used	environment	variables.	The	following	example	shows	how	to	use	an	environment	variable	to	launch	an	emulator	when	the	SDK	installation	has	been	put	in	E:\Android\sdk\	instead	of	in	its	default	location	of	$USER_HOME	or	$HOME.	$	set	ANDROID_HOME=E:\Android\sdk\	$	emulator	-avd	Pixel_API_25
Variables	reference	The	following	table	describes	commonly	used	environment	variables	for	the	Android	SDK	tools.	Table	1.	Environment	variables	How	to	set	environment	variables	The	following	examples	show	how	to	set	environment	variables	in	a	terminal	window	and	in	a	shell	script	for	different	operating	systems.	Variable	settings	in	terminal
windows	last	as	long	as	the	window	is	open.	Variable	settings	in	shell	scripts	persist	across	login	sessions.	Windows:	In	a	terminal	window,	type	the	following:	set	HTTP_PROXY=myserver:1981	Alternately,	add	it	to	a	shell	script	through	the	Windows	UI.	Check	the	documentation	for	your	version	of	Windows	to	learn	how.	Mac	and	Linux:	In	a	terminal
window,	type	the	following:	export	HTTP_PROXY=myserver:1981	Alternately,	add	it	to	your	~/.bash_profile	file	and	source	the	file	as	follows:	export	HTTP_PROXY=myserver:1981	$	source	~/.bash_profile	Content	and	code	samples	on	this	page	are	subject	to	the	licenses	described	in	the	Content	License.	Java	and	OpenJDK	are	trademarks	or
registered	trademarks	of	Oracle	and/or	its	affiliates.	Last	updated	2022-03-23	UTC.	[{	"type":	"thumb-down",	"id":	"missingTheInformationINeed",	"label":"Missing	the	information	I	need"	},{	"type":	"thumb-down",	"id":	"tooComplicatedTooManySteps",	"label":"Too	complicated	/	too	many	steps"	},{	"type":	"thumb-down",	"id":	"outOfDate",
"label":"Out	of	date"	},{	"type":	"thumb-down",	"id":	"samplesCodeIssue",	"label":"Samples	/	code	issue"	},{	"type":	"thumb-down",	"id":	"otherDown",	"label":"Other"	}]	[{	"type":	"thumb-up",	"id":	"easyToUnderstand",	"label":"Easy	to	understand"	},{	"type":	"thumb-up",	"id":	"solvedMyProblem",	"label":"Solved	my	problem"	},{	"type":	"thumb-up",
"id":	"otherUp",	"label":"Other"	}]	“ADB	install”	may	be	the	topic	you	may	also	be	interested	in.	To	communicate	with	a	device	from	your	computer	with	this	command-line	tool,	you	need	to	install	ADB	on	Windows	10	or	Mac.	How	to	install	ADB?	This	guide	from	MiniTool	gives	you	step-by-step	instructions.ADB,	also	called	Android	Debug	Bridge,	is	a
command-line	tool	that	is	mainly	for	developers	to	debug	apps.	Now	it	is	not	restricted	to	developers	and	you	can	use	it	to	do	some	useful	things	on	your	PC,	for	example,	backup	and	restore	Android	with	ADB,	ADB	install	APK	for	Android	from	a	computer,	reboot	the	phone	to	Recovery	Mode	and	Bootloader,	etc.	To	use	ABD	on	your	computer,	you
need	to	install	it	first.	The	following	step-by-step	guide	gives	detailed	instructions	and	let’s	look	through	it.	How	to	Install	ADB	Windows	10	and	Mac	ADB	Download	Windows	10	and	Install	It	is	not	complicated	to	set	up	ADB	on	Windows	10	and	see	the	steps	below:	Download	SDK	Platform-Tools	and	Unzip	It	Step	1:	Go	to	the	SDK	Platform	Tools
release	notes	page	and	click	Download	SDK	Platform-Tools	for	Windows	to	get	a	ZIP	folder.	Step	2:	Extract	all	the	contents	of	this	folder	on	your	Windows	10	PC.	Step	3:	In	the	extracted	folder,	press	the	Shift	key	and	right-click	the	space.	This	can	bring	a	context	menu	and	choose	Open	PowerShell	window	here.	On	some	computers,	you	see	Open
command	window	here.	Tip:	You	can	click	on	the	address	bar	in	the	extracted	folder,	type	in	cmd	and	press	Enter	to	open	Command	Prompt.	Enable	USB	Debugging	on	Your	Android	Phone	To	use	ADB,	you	need	to	make	sure	USB	debugging	is	turned	on.	1.	Connect	your	Android	phone	to	the	Windows	PC	via	a	USB	cable.	Choose	MTP	as	the
connection	mode.	2.	Type	the	adb	devices	command	to	the	CMD	or	PowerShell	command	and	press	Enter.	This	command	can	view	the	list	of	Android	devices	communicating	with	your	computer.	3.	On	your	phone’s	screen,	a	prompt	pops	up	to	ask	you	to	allow	USB	Debugging	access.	Just	allow	it.	You	can	check	the	box	of	Always	allow	from	this
computer.	4.	After	enabling	USB	debugging,	you	should	execute	adb	devices	again	to	list	your	device.	Tip:	In	addition,	there	is	another	way	for	you	to	enable	USB	debugging.	After	connecting	the	Android	phone	to	your	PC,	pick	up	the	phone,	go	to	Settings	>	About	phone,	tap	on	Build	number	several	times	to	access	Developer	options,	and	turn	on
USB	debugging.	To	know	more,	refer	to	this	post	-	What	Is	USB	Debugging	&	How	to	Enable/Disable	It.	ADB	Commands	Now,	ADB	is	successfully	installed	on	your	Windows	computer.	Then,	you	can	run	some	ADB	commands	based	on	your	needs.	Let’s	see	some	common	commands:	adb	install	-	install	apps	programmatically	using	APK	files	adb
reboot	recovery	-	reboot	your	Android	device	in	recovery	mode	adb	reboot	bootloader	-	reboot	your	Android	device	to	bootloader	adb	shell	-	start	a	remote	shell	with	your	Android	device	adb	pull	-	move	a	file	from	your	Android	device	programmatically	ADB	Install	Mac	via	Homebrew	Installing	ADB	on	your	Mac	is	different	from	the	installation	on
Windows	and	follow	the	steps	below	for	this	work:	Step	1:	Open	Terminal	and	execute	the	command	-	ruby	-e	“$(curl	-fsSL	"	to	install	Homebrew.	Step	2:	Install	ADB	via	the	command	-	brew	cask	install	android-platform-tools.	Step	3:	Enable	USB	debugging	and	start	using	ADB	via	the	adb	devices	command.	ADB	Driver	Install	(If	Needed)	Sometimes
you	cannot	use	ADB	properly	although	you	install	it	on	your	computer	successfully.	When	getting	the	error	device	not	found	in	Windows	10,	you	need	to	install	an	up-to-date	ADB	driver.	Besides,	some	other	ways	are	also	recommended,	and	refer	to	this	post	to	know	more	-	How	to	Fix	ADB	Device	Not	Found	Error	in	Windows	10?	(4	Ways).		Final
Words	How	to	install	ADB	on	Windows	10	PC	or	Mac?	After	reading	this	post,	you	find	the	answer.	Just	follow	the	step-by-step	guide	for	an	easy	ADB	installation	operation.	Android	Debug	Bridge	(adb)	is	a	versatile	command-line	tool	that	lets	you	communicate	with	a	device.	The	adb	command	facilitates	a	variety	of	device	actions,	such	as	installing
and	debugging	apps,	and	it	provides	access	to	a	Unix	shell	that	you	can	use	to	run	a	variety	of	commands	on	a	device.	It	is	a	client-server	program	that	includes	three	components:	A	client,	which	sends	commands.	The	client	runs	on	your	development	machine.	You	can	invoke	a	client	from	a	command-line	terminal	by	issuing	an	adb	command.	A
daemon	(adbd),	which	runs	commands	on	a	device.	The	daemon	runs	as	a	background	process	on	each	device.	A	server,	which	manages	communication	between	the	client	and	the	daemon.	The	server	runs	as	a	background	process	on	your	development	machine.	adb	is	included	in	the	Android	SDK	Platform-Tools	package.	You	can	download	this
package	with	the	SDK	Manager,	which	installs	it	at	android_sdk/platform-tools/.	Or	if	you	want	the	standalone	Android	SDK	Platform-Tools	package,	you	can	download	it	here.	For	information	on	connecting	a	device	for	use	over	ADB,	including	how	to	use	the	Connection	Assistant	to	troubleshoot	common	problems,	see	Run	apps	on	a	hardware	device.
How	adb	works	When	you	start	an	adb	client,	the	client	first	checks	whether	there	is	an	adb	server	process	already	running.	If	there	isn't,	it	starts	the	server	process.	When	the	server	starts,	it	binds	to	local	TCP	port	5037	and	listens	for	commands	sent	from	adb	clients—all	adb	clients	use	port	5037	to	communicate	with	the	adb	server.	The	server
then	sets	up	connections	to	all	running	devices.	It	locates	emulators	by	scanning	odd-numbered	ports	in	the	range	5555	to	5585,	the	range	used	by	the	first	16	emulators.	Where	the	server	finds	an	adb	daemon	(adbd),	it	sets	up	a	connection	to	that	port.	Note	that	each	emulator	uses	a	pair	of	sequential	ports	—	an	even-numbered	port	for	console

connections	and	an	odd-numbered	port	for	adb	connections.	For	example:	Emulator	1,	console:	5554	Emulator	1,	adb:	5555	Emulator	2,	console:	5556	Emulator	2,	adb:	5557	and	so	on...	As	shown,	the	emulator	connected	to	adb	on	port	5555	is	the	same	as	the	emulator	whose	console	listens	on	port	5554.	Once	the	server	has	set	up	connections	to	all
devices,	you	can	use	adb	commands	to	access	those	devices.	Because	the	server	manages	connections	to	devices	and	handles	commands	from	multiple	adb	clients,	you	can	control	any	device	from	any	client	(or	from	a	script).	Enable	adb	debugging	on	your	device	To	use	adb	with	a	device	connected	over	USB,	you	must	enable	USB	debugging	in	the
device	system	settings,	under	Developer	options.	To	use	adb	with	a	device	connected	over	Wi-Fi,	see	Connect	to	a	device	over	Wi-Fi.	On	Android	4.2	and	higher,	the	Developer	options	screen	is	hidden	by	default.	To	make	it	visible,	go	to	Settings	>	About	phone	and	tap	Build	number	seven	times.	Return	to	the	previous	screen	to	find	Developer	options
at	the	bottom.	On	some	devices,	the	Developer	options	screen	might	be	located	or	named	differently.	You	can	now	connect	your	device	with	USB.	You	can	verify	that	your	device	is	connected	by	executing	adb	devices	from	the	android_sdk/platform-tools/	directory.	If	connected,	you'll	see	the	device	name	listed	as	a	"device."	Note:	When	you	connect	a
device	running	Android	4.2.2	or	higher,	the	system	shows	a	dialog	asking	whether	to	accept	an	RSA	key	that	allows	debugging	through	this	computer.	This	security	mechanism	protects	user	devices	because	it	ensures	that	USB	debugging	and	other	adb	commands	cannot	be	executed	unless	you're	able	to	unlock	the	device	and	acknowledge	the	dialog.
For	more	information	about	connecting	to	a	device	over	USB,	read	Run	Apps	on	a	Hardware	Device.	Connect	to	a	device	over	Wi-Fi	(Android	11+)	Note:	The	instructions	below	do	not	apply	to	Wear	devices	running	Android	11.	See	the	guide	to	debugging	a	Wear	OS	app	for	more	information.	Android	11	and	higher	supports	deploying	and	debugging
your	app	wirelessly	from	your	workstation	using	Android	Debug	Bridge	(adb).	For	example,	you	can	deploy	your	debuggable	app	to	multiple	remote	devices	without	physically	connecting	your	device	via	USB.	This	eliminates	the	need	to	deal	with	common	USB	connection	issues,	such	as	driver	installation.	Before	you	begin	using	wireless	debugging,
you	must	complete	the	following	steps:	Ensure	that	your	workstation	and	device	are	connected	to	the	same	wireless	network.	Ensure	that	your	device	is	running	Android	11	or	higher.	For	more	informaton,	see	Check	&	update	your	Android	version.	Ensure	that	you	have	Android	Studio	Bumblebee.	You	can	download	it	here.	On	your	workstation,
update	to	the	latest	version	of	the	SDK	Platform-Tools.	To	use	wireless	debugging,	you	must	pair	your	device	to	your	workstation	using	a	QR	Code	or	a	pairing	code.	Your	workstation	and	device	must	be	connected	to	the	same	wireless	network.	To	connect	to	your	device,	follow	these	steps:	Enable	developer	options	on	your	device:	On	your	device,	find
the	Build	number	option.	You	can	find	this	in	these	locations	for	the	following	devices:	Device	Setting	Google	Pixel	Settings	>	About	phone	>	Build	number	Samsung	Galaxy	S8	and	later	Settings	>	About	phone	>	Software	information	>	Build	number	LG	G6	and	later	Settings	>	About	phone	>	Software	info	>	Build	number	HTC	U11	and	later
Settings	>	About	>	Software	information	>	More	>	Build	number	or	Settings	>	System	>	About	phone	>	Software	information	>	More	>	Build	number	OnePlus	5T	and	later	Settings	>	About	phone	>	Build	number	Tap	the	Build	Number	option	seven	times	until	you	see	the	message	You	are	now	a	developer!	This	enables	developer	options	on	your
phone.	Enable	debugging	over	Wi-Fi	on	your	device:	On	your	device,	find	Developer	options.	You	can	find	this	option	in	these	locations	for	the	following	devices:	Device	Setting	Google	Pixel,	OnePlus	5T	and	later	Settings	>	System	>	Developer	options	Samsung	Galaxy	S8	and	later,	LG	G6	and	later,	HTC	U11	and	later	Settings	>	Developer	options	In
Developer	options,	scroll	down	to	the	Debugging	section	and	turn	on	Wireless	debugging.	On	the	Allow	wireless	debugging	on	this	network?	popup,	select	Allow.	Open	Android	Studio	and	select	Pair	Devices	Using	Wi-Fi	from	the	run	configurations	dropdown	menu.	Figure	1.	Run	configurations	dropdown	menu.	The	Pair	devices	over	Wi-Fi	window
pops	up,	as	shown	below.	Figure	2.	Popup	window	to	pair	devices	using	QR	code	or	pairing	code	On	your	device,	tap	on	Wireless	debugging	and	pair	your	device:	Figure	3.	Screenshot	of	the	Wireless	debugging	setting	on	a	Google	Pixel	phone.	To	pair	your	device	with	a	QR	code,	select	Pair	device	with	QR	code	and	scan	the	QR	code	obtained	from	the
Pair	devices	over	Wi-Fi	popup	above.	To	pair	your	device	with	a	pairing	code,	select	Pair	device	with	pairing	code	from	the	Pair	devices	over	Wi-Fi	popup	above.	On	your	device,	select	Pair	using	pairing	code	and	take	note	of	the	six	digit	pin	code.	Once	your	device	appears	on	the	Pair	devices	over	Wi-Fi	window,	you	can	select	Pair	and	enter	the	six
digit	pin	code	shown	on	your	device.	Figure	4.	Example	of	six	digit	pin	code	entry.	After	you	are	paired,	you	can	attempt	to	deploy	your	app	to	your	device.	To	pair	a	different	device	or	to	forget	this	device	on	your	workstation,	navigate	to	Wireless	debugging	on	your	device,	tap	on	your	workstation	name	under	Paired	devices,	and	select	Forget.	If	you
want	to	quickly	turn	on	and	off	wireless	debugging,	you	can	utilize	the	Quick	settings	developer	tiles	for	Wireless	debugging,	found	in	Developer	Options	>	Quick	settings	developer	tiles.	Figure	5.	The	Quick	settings	developer	tiles	setting	allows	you	to	quickly	turn	wireless	debugging	on	and	off.	Alternatively,	to	connect	to	your	device	via	command
line	without	Android	Studio,	follow	these	steps:	Enable	developer	options	on	your	device,	as	described	above.	Enable	Wireless	debugging	on	your	device,	as	described	above.	On	your	workstation,	open	a	terminal	window	and	navigate	to	android_sdk/platform-tools.	Find	your	IP	address,	port	number,	and	pairing	code	by	selecting	Pair	device	with
pairing	code.	Take	note	of	the	IP	address,	port	number,	and	pairing	code	displayed	on	the	device.	On	your	workstation's	terminal,	run	adb	pair	ipaddr:port.	Use	the	IP	address	and	port	number	from	above.	When	prompted,	enter	the	pairing	code,	as	shown	below.	Figure	6.	A	message	indicates	that	your	device	has	been	successfully	paired.	Resolve
wireless	connection	issues	If	you	are	having	issues	connecting	to	your	device	wirelessly,	you	can	try	the	following	troubleshooting	steps	to	resolve	the	issue.	Check	if	your	workstation	and	device	meet	the	prerequisites	To	meet	the	prerequisites	for	wireless	debugging,	ensure	that:	Your	workstation	and	device	are	connected	to	the	same	wireless
network.	Your	device	is	running	Android	11	or	higher.	For	more	information,	see	Check	&	update	your	Android	version.	You	have	Android	Studio	Bumblebee.	You	can	download	it	here.	You	have	the	latest	version	of	the	SDK	Platform	Tools	on	your	workstation.	Check	for	other	known	issues	The	following	is	a	list	of	current	known	issues	with	wireless
debugging	in	Android	Studio	and	how	to	resolve	them.	Wi-Fi	is	not	connecting:	Some	Wi-Fi	networks,	such	as	corporate	Wi-Fi	networks,	may	block	p2p	connections	and	not	allow	you	to	connect	over	Wi-Fi.Try	connecting	with	a	cable	or	another	Wi-Fi	network.	ADB	over	Wi-Fi	sometimes	turns	off	automatically:	This	can	happen	if	the	device	either
switches	Wi-Fi	networks	or	disconnects	from	the	network.	Connect	to	a	device	over	Wi-Fi	(Android	10	and	lower)	Note:	The	instructions	below	do	not	apply	to	Wear	devices	running	Android	10	(or	lower).	See	the	guide	to	debugging	a	Wear	OS	app	for	more	information.	adb	usually	communicates	with	the	device	over	USB,	but	you	can	also	use	adb
over	Wi-Fi.	To	connect	a	device	running	Android	10	or	lower,	there	are	some	initial	steps	you	must	do	over	USB,	as	described	below:	Connect	your	Android	device	and	adb	host	computer	to	a	common	Wi-Fi	network	accessible	to	both.	Beware	that	not	all	access	points	are	suitable;	you	might	need	to	use	an	access	point	whose	firewall	is	configured
properly	to	support	adb.	If	you	are	connecting	to	a	Wear	OS	device,	turn	off	Bluetooth	on	the	phone	that's	paired	with	the	device.	Connect	the	device	to	the	host	computer	with	a	USB	cable.	Set	the	target	device	to	listen	for	a	TCP/IP	connection	on	port	5555.	adb	tcpip	5555	Disconnect	the	USB	cable	from	the	target	device.	Find	the	IP	address	of	the
Android	device.	For	example,	on	a	Nexus	device,	you	can	find	the	IP	address	at	Settings	>	About	tablet	(or	About	phone)	>	Status	>	IP	address.	Or,	on	a	Wear	OS	device,	you	can	find	the	IP	address	at	Settings	>	Wi-Fi	Settings	>	Advanced	>	IP	address.	Connect	to	the	device	by	its	IP	address.	adb	connect	device_ip_address:5555	Confirm	that	your
host	computer	is	connected	to	the	target	device:	$	adb	devices	List	of	devices	attached	device_ip_address:5555	device	You're	now	good	to	go!	If	the	adb	connection	is	ever	lost:	Make	sure	that	your	host	is	still	connected	to	the	same	Wi-Fi	network	your	Android	device	is.	Reconnect	by	executing	the	adb	connect	step	again.	Or	if	that	doesn't	work,	reset
your	adb	host:	adb	kill-server	Then	start	over	from	the	beginning.	Query	for	devices	Before	issuing	adb	commands,	it	is	helpful	to	know	what	device	instances	are	connected	to	the	adb	server.	You	can	generate	a	list	of	attached	devices	using	the	devices	command.	adb	devices	-l	In	response,	adb	prints	this	status	information	for	each	device:	Serial
number:	A	string	created	by	adb	to	uniquely	identify	the	device	by	its	port	number.	Here's	an	example	serial	number:	emulator-5554	State:	The	connection	state	of	the	device	can	be	one	of	the	following:	offline:	The	device	is	not	connected	to	adb	or	is	not	responding.	device:	The	device	is	now	connected	to	the	adb	server.	Note	that	this	state	does	not
imply	that	the	Android	system	is	fully	booted	and	operational	because	the	device	connects	to	adb	while	the	system	is	still	booting.	However,	after	boot-up,	this	is	the	normal	operational	state	of	an	device.	no	device:	There	is	no	device	connected.	Description:	If	you	include	the	-l	option,	the	devices	command	tells	you	what	the	device	is.	This	information
is	helpful	when	you	have	multiple	devices	connected	so	that	you	can	tell	them	apart.	The	following	example	shows	the	devices	command	and	its	output.	There	are	three	devices	running.	The	first	two	lines	in	the	list	are	emulators,	and	the	third	line	is	a	hardware	device	that	is	attached	to	the	computer.	$	adb	devices	List	of	devices	attached	emulator-
5556	device	product:sdk_google_phone_x86_64	model:Android_SDK_built_for_x86_64	device:generic_x86_64	emulator-5554	device	product:sdk_google_phone_x86	model:Android_SDK_built_for_x86	device:generic_x86	0a388e93	device	usb:1-1	product:razor	model:Nexus_7	device:flo	Emulator	not	listed	The	adb	devices	command	has	a	corner-case
command	sequence	that	causes	running	emulator(s)	to	not	show	up	in	the	adb	devices	output	even	though	the	emulator(s)	are	visible	on	your	desktop.	This	happens	when	all	of	the	following	conditions	are	true:	The	adb	server	is	not	running,	and	You	use	the	emulator	command	with	the	-port	or	-ports	option	with	an	odd-numbered	port	value	between
5554	and	5584,	and	The	odd-numbered	port	you	chose	is	not	busy	so	the	port	connection	can	be	made	at	the	specified	port	number,	or	if	it	is	busy,	the	emulator	switches	to	another	port	that	meets	the	requirements	in	2,	and	You	start	the	adb	server	after	you	start	the	emulator.	One	way	to	avoid	this	situation	is	to	let	the	emulator	choose	its	own	ports,
and	don't	run	more	than	16	emulators	at	once.	Another	way	is	to	always	start	the	adb	server	before	you	use	the	emulator	command,	as	explained	in	the	following	examples.	Example	1:	In	the	following	command	sequence,	the	adb	devices	command	starts	the	adb	server,	but	the	list	of	devices	does	not	appear.	Stop	the	adb	server	and	enter	the
following	commands	in	the	order	shown.	For	the	avd	name,	provide	a	valid	avd	name	from	your	system.	To	get	a	list	of	avd	names,	type	emulator	-list-avds.	The	emulator	command	is	in	the	android_sdk/tools	directory.	$	adb	kill-server	$	emulator	-avd	Nexus_6_API_25	-port	5555	$	adb	devices	List	of	devices	attached	*	daemon	not	running.	starting	it
now	on	port	5037	*	*	daemon	started	successfully	*	Example	2:	In	the	following	command	sequence,	adb	devices	displays	the	list	of	devices	because	the	adb	server	was	started	first.	To	see	the	emulator	in	the	adb	devices	output,	stop	the	adb	server,	and	then	start	it	again	after	using	the	emulator	command	and	before	using	the	adb	devices	command,
as	follows:	$	adb	kill-server	$	emulator	-avd	Nexus_6_API_25	-port	5557	$	adb	start-server	$	adb	devices	List	of	devices	attached	emulator-5557	device	For	more	information	about	emulator	command-line	options,	see	Using	Command	Line	Parameters.	Send	commands	to	a	specific	device	If	multiple	devices	are	running,	you	must	specify	the	target
device	when	you	issue	the	adb	command.	To	specify	the	target,	use	the	devices	command	to	get	the	serial	number	of	the	target.	Once	you	have	the	serial	number,	use	the	-s	option	with	the	adb	commands	to	specify	the	serial	number.	If	you're	going	to	issue	a	lot	of	adb	commands,	you	can	set	the	$ANDROID_SERIAL	environment	variable	to	contain
the	serial	number	instead.	If	you	use	both	-s	and	$ANDROID_SERIAL,	-s	overrides	$ANDROID_SERIAL.	In	the	following	example,	the	list	of	attached	devices	is	obtained,	and	then	the	serial	number	of	one	of	the	devices	is	used	to	install	the	helloWorld.apk	on	that	device.	$	adb	devices	List	of	devices	attached	emulator-5554	device	emulator-5555
device	$	adb	-s	emulator-5555	install	helloWorld.apk	Note:	If	you	issue	a	command	without	specifying	a	target	device	when	multiple	devices	are	available,	adb	generates	an	error.	If	you	have	multiple	devices	available,	but	only	one	is	an	emulator,	use	the	-e	option	to	send	commands	to	the	emulator.	Likewise,	if	there	are	multiple	devices	but	only	one
hardware	device	attached,	use	the	-d	option	to	send	commands	to	the	hardware	device.	Install	an	app	You	can	use	adb	to	install	an	APK	on	an	emulator	or	connected	device	with	the	install	command:	adb	install	path_to_apk	You	must	use	the	-t	option	with	the	install	command	when	you	install	a	test	APK.	For	more	information,	see	-t.	For	more
information	about	how	to	create	an	APK	file	that	you	can	install	on	an	emulator/device	instance,	see	Build	and	Run	Your	App.	Note	that,	if	you	are	using	Android	Studio,	you	do	not	need	to	use	adb	directly	to	install	your	app	on	the	emulator/device.	Instead,	Android	Studio	handles	the	packaging	and	installation	of	the	app	for	you.	Set	up	port
forwarding	You	can	use	the	forward	command	to	set	up	arbitrary	port	forwarding,	which	forwards	requests	on	a	specific	host	port	to	a	different	port	on	a	device.	The	following	example	sets	up	forwarding	of	host	port	6100	to	device	port	7100:	adb	forward	tcp:6100	tcp:7100	The	following	example	sets	up	forwarding	of	host	port	6100	to	local:logd:	adb
forward	tcp:6100	local:logd	Use	the	pull	and	push	commands	to	copy	files	to	and	from	an	device.	Unlike	the	install	command,	which	only	copies	an	APK	file	to	a	specific	location,	the	pull	and	push	commands	let	you	copy	arbitrary	directories	and	files	to	any	location	in	a	device.	To	copy	a	file	or	directory	and	its	sub-directories	from	the	device,	do	the
following:	adb	pull	remote	local	To	copy	a	file	or	directory	and	its	sub-directories	to	the	device,	do	the	following:	adb	push	local	remote	Replace	local	and	remote	with	the	paths	to	the	target	files/directory	on	your	development	machine	(local)	and	on	the	device	(remote).	For	example:	adb	push	foo.txt	/sdcard/foo.txt	Stop	the	adb	server	In	some	cases,
you	might	need	to	terminate	the	adb	server	process	and	then	restart	it	to	resolve	the	problem	(e.g.,	if	adb	does	not	respond	to	a	command).	To	stop	the	adb	server,	use	the	adb	kill-server	command.	You	can	then	restart	the	server	by	issuing	any	other	adb	command.	Issuing	adb	commands	You	can	issue	adb	commands	from	a	command	line	on	your
development	machine	or	from	a	script.	The	usage	is:	adb	[-d	|	-e	|	-s	serial_number]	command	If	there's	only	one	emulator	running	or	only	one	device	connected,	the	adb	command	is	sent	to	that	device	by	default.	If	multiple	emulators	are	running	and/or	multiple	devices	are	attached,	you	need	to	use	the	-d,	-e,	or	-s	option	to	specify	the	target	device	to
which	the	command	should	be	directed.	You	can	see	a	detailed	list	of	all	supported	adb	commands	using	the	following	command:	adb	--help	Issue	shell	commands	You	can	use	the	shell	command	to	issue	device	commands	through	adb,	or	to	start	an	interactive	shell.	To	issue	a	single	command	use	the	shell	command	like	this:	adb	[-d	|-e	|	-s
serial_number]	shell	shell_command	To	start	an	interactive	shell	on	a	device	use	the	shell	command	like	this:	adb	[-d	|	-e	|	-s	serial_number]	shell	To	exit	an	interactive	shell,	press	Control	+	D	or	type	exit.	Note:	With	Android	Platform-Tools	23	and	higher,	adb	handles	arguments	the	same	way	that	the	ssh(1)	command	does.	This	change	has	fixed	a	lot
of	problems	with	command	injection	and	makes	it	possible	to	now	safely	execute	commands	that	contain	shell	metacharacters,	such	as	adb	install	Let\'sGo.apk.	But,	this	change	means	that	the	interpretation	of	any	command	that	contains	shell	metacharacters	has	also	changed.	For	example,	the	adb	shell	setprop	foo	'a	b'	command	is	now	an	error
because	the	single	quotes	(')	are	swallowed	by	the	local	shell,	and	the	device	sees	adb	shell	setprop	foo	a	b.	To	make	the	command	work,	quote	twice,	once	for	the	local	shell	and	once	for	the	remote	shell,	the	same	as	you	do	with	ssh(1).	For	example,	adb	shell	setprop	foo	"'a	b'".	Android	provides	most	of	the	usual	Unix	command-line	tools.	For	a	list	of
available	tools,	use	the	following	command:	adb	shell	ls	/system/bin	Help	is	available	for	most	of	the	commands	via	the	--help	argument.	Many	of	the	shell	commands	are	provided	by	toybox.	General	help	applicable	to	all	toybox	commands	is	available	via	toybox	--help.	See	also	Logcat	Command-Line	Tool	which	is	useful	for	monitoring	the	system	log.
Call	activity	manager	(am)	Within	an	adb	shell,	you	can	issue	commands	with	the	activity	manager	(am)	tool	to	perform	various	system	actions,	such	as	start	an	activity,	force-stop	a	process,	broadcast	an	intent,	modify	the	device	screen	properties,	and	more.	While	in	a	shell,	the	syntax	is:	am	command	You	can	also	issue	an	activity	manager	command
directly	from	adb	without	entering	a	remote	shell.	For	example:	adb	shell	am	start	-a	android.intent.action.VIEW	Table	2.	Available	activity	manager	commands	Command	Description	start	[options]	intent	Start	an	Activity	specified	by	intent.	See	the	Specification	for	intent	arguments.	Options	are:	-D:	Enable	debugging.	-W:	Wait	for	launch	to
complete.	--start-profiler	file:	Start	profiler	and	send	results	to	file.	-P	file:	Like	--start-profiler,	but	profiling	stops	when	the	app	goes	idle.	-R	count:	Repeat	the	activity	launch	count	times.	Prior	to	each	repeat,	the	top	activity	will	be	finished.	-S:	Force	stop	the	target	app	before	starting	the	activity.	--opengl-trace:	Enable	tracing	of	OpenGL	functions.	--
user	user_id	|	current:	Specify	which	user	to	run	as;	if	not	specified,	then	run	as	the	current	user.	startservice	[options]	intent	Start	the	Service	specified	by	intent.	See	the	Specification	for	intent	arguments.	Options	are:	--user	user_id	|	current:	Specify	which	user	to	run	as;	if	not	specified,	then	run	as	the	current	user.	force-stop	package	Force	stop
everything	associated	with	package	(the	app's	package	name).	kill	[options]	package	Kill	all	processes	associated	with	package	(the	app's	package	name).	This	command	kills	only	processes	that	are	safe	to	kill	and	that	will	not	impact	the	user	experience.	Options	are:	--user	user_id	|	all	|	current:	Specify	user	whose	processes	to	kill;	all	users	if	not
specified.	kill-all	Kill	all	background	processes.	broadcast	[options]	intent	Issue	a	broadcast	intent.	See	the	Specification	for	intent	arguments.	Options	are:	[--user	user_id	|	all	|	current]:	Specify	which	user	to	send	to;	if	not	specified	then	send	to	all	users.	instrument	[options]	component	Start	monitoring	with	an	Instrumentation	instance.	Typically	the
target	component	is	the	form	test_package/runner_class.	Options	are:	-r:	Print	raw	results	(otherwise	decode	report_key_streamresult).	Use	with	[-e	perf	true]	to	generate	raw	output	for	performance	measurements.	-e	name	value:	Set	argument	name	to	value.	For	test	runners	a	common	form	is	-e	testrunner_flag	value[,value...].	-p	file:	Write	profiling
data	to	file.	-w:	Wait	for	instrumentation	to	finish	before	returning.	Required	for	test	runners.	--no-window-animation:	Turn	off	window	animations	while	running.	--user	user_id	|	current:	Specify	which	user	instrumentation	runs	in;	current	user	if	not	specified.	profile	start	process	file	Start	profiler	on	process,	write	results	to	file.	profile	stop	process
Stop	profiler	on	process.	dumpheap	[options]	process	file	Dump	the	heap	of	process,	write	to	file.	Options	are:	--user	[user_id	|	current]:	When	supplying	a	process	name,	specify	user	of	process	to	dump;	uses	current	user	if	not	specified.	-n:	Dump	native	heap	instead	of	managed	heap.	set-debug-app	[options]	package	Set	app	package	to	debug.
Options	are:	-w:	Wait	for	debugger	when	app	starts.	--persistent:	Retain	this	value.	clear-debug-app	Clear	the	package	previous	set	for	debugging	with	set-debug-app.	monitor	[options]	Start	monitoring	for	crashes	or	ANRs.	Options	are:	--gdb:	Start	gdbserv	on	the	given	port	at	crash/ANR.	screen-compat	{on	|	off}	package	Control	screen	compatibility
mode	of	package.	display-size	[reset	|	widthxheight]	Override	device	display	size.	This	command	is	helpful	for	testing	your	app	across	different	screen	sizes	by	mimicking	a	small	screen	resolution	using	a	device	with	a	large	screen,	and	vice	versa.	Example:am	display-size	1280x800	display-density	dpi	Override	device	display	density.	This	command	is
helpful	for	testing	your	app	across	different	screen	densities	on	high-density	screen	environment	using	a	low	density	screen,	and	vice	versa.	Example:am	display-density	480	to-uri	intent	Print	the	given	intent	specification	as	a	URI.	See	the	Specification	for	intent	arguments.	to-intent-uri	intent	Print	the	given	intent	specification	as	an	intent:	URI.	See
the	Specification	for	intent	arguments.	Specification	for	intent	arguments	For	activity	manager	commands	that	take	an	intent	argument,	you	can	specify	the	intent	with	the	following	options:	Show	all	-a	action	Specify	the	intent	action,	such	as	android.intent.action.VIEW.	You	can	declare	this	only	once.	-d	data_uri	Specify	the	intent	data	URI,	such	as
content://contacts/people/1.	You	can	declare	this	only	once.	-t	mime_type	Specify	the	intent	MIME	type,	such	as	image/png.	You	can	declare	this	only	once.	-c	category	Specify	an	intent	category,	such	as	android.intent.category.APP_CONTACTS.	-n	component	Specify	the	component	name	with	package	name	prefix	to	create	an	explicit	intent,	such	as
com.example.app/.ExampleActivity.	-f	flags	Add	flags	to	the	intent,	as	supported	by	setFlags().	--esn	extra_key	Add	a	null	extra.	This	option	is	not	supported	for	URI	intents.	-e	|	--es	extra_key	extra_string_value	Add	string	data	as	a	key-value	pair.	--ez	extra_key	extra_boolean_value	Add	boolean	data	as	a	key-value	pair.	--ei	extra_key	extra_int_value	Add
integer	data	as	a	key-value	pair.	--el	extra_key	extra_long_value	Add	long	data	as	a	key-value	pair.	--ef	extra_key	extra_float_value	Add	float	data	as	a	key-value	pair.	--eu	extra_key	extra_uri_value	Add	URI	data	as	a	key-value	pair.	--ecn	extra_key	extra_component_name_value	Add	a	component	name,	which	is	converted	and	passed	as	a
ComponentName	object.	--eia	extra_key	extra_int_value[,extra_int_value...]	Add	an	array	of	integers.	--ela	extra_key	extra_long_value[,extra_long_value...]	Add	an	array	of	longs.	--efa	extra_key	extra_float_value[,extra_float_value...]	Add	an	array	of	floats.	--grant-read-uri-permission	Include	the	flag	FLAG_GRANT_READ_URI_PERMISSION.	--grant-
write-uri-permission	Include	the	flag	FLAG_GRANT_WRITE_URI_PERMISSION.	--debug-log-resolution	Include	the	flag	FLAG_DEBUG_LOG_RESOLUTION.	--exclude-stopped-packages	Include	the	flag	FLAG_EXCLUDE_STOPPED_PACKAGES.	--include-stopped-packages	Include	the	flag	FLAG_INCLUDE_STOPPED_PACKAGES.	--activity-brought-to-front
Include	the	flag	FLAG_ACTIVITY_BROUGHT_TO_FRONT.	--activity-clear-top	Include	the	flag	FLAG_ACTIVITY_CLEAR_TOP.	--activity-clear-when-task-reset	Include	the	flag	FLAG_ACTIVITY_CLEAR_WHEN_TASK_RESET.	--activity-exclude-from-recents	Include	the	flag	FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS.	--activity-launched-from-history
Include	the	flag	FLAG_ACTIVITY_LAUNCHED_FROM_HISTORY.	--activity-multiple-task	Include	the	flag	FLAG_ACTIVITY_MULTIPLE_TASK.	--activity-no-animation	Include	the	flag	FLAG_ACTIVITY_NO_ANIMATION.	--activity-no-history	Include	the	flag	FLAG_ACTIVITY_NO_HISTORY.	--activity-no-user-action	Include	the	flag
FLAG_ACTIVITY_NO_USER_ACTION.	--activity-previous-is-top	Include	the	flag	FLAG_ACTIVITY_PREVIOUS_IS_TOP.	--activity-reorder-to-front	Include	the	flag	FLAG_ACTIVITY_REORDER_TO_FRONT.	--activity-reset-task-if-needed	Include	the	flag	FLAG_ACTIVITY_RESET_TASK_IF_NEEDED.	--activity-single-top	Include	the	flag
FLAG_ACTIVITY_SINGLE_TOP.	--activity-clear-task	Include	the	flag	FLAG_ACTIVITY_CLEAR_TASK.	--activity-task-on-home	Include	the	flag	FLAG_ACTIVITY_TASK_ON_HOME.	--receiver-registered-only	Include	the	flag	FLAG_RECEIVER_REGISTERED_ONLY.	--receiver-replace-pending	Include	the	flag	FLAG_RECEIVER_REPLACE_PENDING.	--selector
Requires	the	use	of	-d	and	-t	options	to	set	the	intent	data	and	type.	URI	component	package	You	can	directly	specify	a	URI,	package	name,	and	component	name	when	not	qualified	by	one	of	the	above	options.	When	an	argument	is	unqualified,	the	tool	assumes	the	argument	is	a	URI	if	it	contains	a	":"	(colon);	it	assumes	the	argument	is	a	component
name	if	it	contains	a	"/"	(forward-slash);	otherwise	it	assumes	the	argument	is	a	package	name.	Call	package	manager	(pm)	Within	an	adb	shell,	you	can	issue	commands	with	the	package	manager	(pm)	tool	to	perform	actions	and	queries	on	app	packages	installed	on	the	device.	While	in	a	shell,	the	syntax	is:	pm	command	You	can	also	issue	a
package	manager	command	directly	from	adb	without	entering	a	remote	shell.	For	example:	adb	shell	pm	uninstall	com.example.MyApp	Table	3.	Available	package	manager	commands.	Command	Description	list	packages	[options]	filter	Prints	all	packages,	optionally	only	those	whose	package	name	contains	the	text	in	filter.	Options:	-f:	See	their
associated	file.	-d:	Filter	to	only	show	disabled	packages.	-e:	Filter	to	only	show	enabled	packages.	-s:	Filter	to	only	show	system	packages.	-3:	Filter	to	only	show	third	party	packages.	-i:	See	the	installer	for	the	packages.	-u:	Also	include	uninstalled	packages.	--user	user_id:	The	user	space	to	query.	list	permission-groups	Prints	all	known	permission
groups.	list	permissions	[options]	group	Prints	all	known	permissions,	optionally	only	those	in	group.	Options:	-g:	Organize	by	group.	-f:	Print	all	information.	-s:	Short	summary.	-d:	Only	list	dangerous	permissions.	-u:	List	only	the	permissions	users	will	see.	list	instrumentation	[options]	List	all	test	packages.	Options:	-f:	List	the	APK	file	for	the	test
package.	target_package:	List	test	packages	for	only	this	app.	list	features	Prints	all	features	of	the	system.	list	libraries	Prints	all	the	libraries	supported	by	the	current	device.	list	users	Prints	all	users	on	the	system.	path	package	Print	the	path	to	the	APK	of	the	given	package.	install	[options]	path	Installs	a	package	(specified	by	path)	to	the	system.
Options:	-r:	Reinstall	an	existing	app,	keeping	its	data.	-t:	Allow	test	APKs	to	be	installed.	Gradle	generates	a	test	APK	when	you	have	only	run	or	debugged	your	app	or	have	used	the	Android	Studio	Build	>	Build	APK	command.	If	the	APK	is	built	using	a	developer	preview	SDK	(if	the	targetSdkVersion	is	a	letter	instead	of	a	number),	you	must	include
the	-t	option	with	the	install	command	if	you	are	installing	a	test	APK.	-i	installer_package_name:	Specify	the	installer	package	name.	--install-location	location:	Sets	the	install	location	using	one	of	the	following	values:	0:	Use	the	default	install	location	1:	Install	on	internal	device	storage	2:	Install	on	external	media	-f:	Install	package	on	the	internal
system	memory.	-d:	Allow	version	code	downgrade.	-g:	Grant	all	permissions	listed	in	the	app	manifest.	--fastdeploy:	Quickly	update	an	installed	package	by	only	updating	the	parts	of	the	APK	that	changed.	--incremental:	Installs	enough	of	the	APK	to	launch	the	app	while	streaming	the	remaining	data	in	the	background.	To	use	this	feature,	you	must
sign	the	APK,	create	an	APK	Signature	Scheme	v4	file,	and	place	this	file	in	the	same	directory	as	the	APK.	This	feature	is	only	supported	on	certain	devices.	This	option	forces	adb	to	use	the	feature	or	fail	if	it	is	not	supported	(with	verbose	information	on	why	it	failed).	Append	the	--wait	option	to	wait	until	the	APK	is	fully	installed	before	granting
access	to	the	APK.	--no-incremental	prevents	adb	from	using	this	feature.	uninstall	[options]	package	Removes	a	package	from	the	system.	Options:	-k:	Keep	the	data	and	cache	directories	around	after	package	removal.	clear	package	Deletes	all	data	associated	with	a	package.	enable	package_or_component	Enable	the	given	package	or	component
(written	as	"package/class").	disable	package_or_component	Disable	the	given	package	or	component	(written	as	"package/class").	disable-user	[options]	package_or_component	Options:	--user	user_id:	The	user	to	disable.	grant	package_name	permission	Grant	a	permission	to	an	app.	On	devices	running	Android	6.0	(API	level	23)	and	higher,	the
permission	can	be	any	permission	declared	in	the	app	manifest.	On	devices	running	Android	5.1	(API	level	22)	and	lower,	must	be	an	optional	permission	defined	by	the	app.	revoke	package_name	permission	Revoke	a	permission	from	an	app.	On	devices	running	Android	6.0	(API	level	23)	and	higher,	the	permission	can	be	any	permission	declared	in
the	app	manifest.	On	devices	running	Android	5.1	(API	level	22)	and	lower,	must	be	an	optional	permission	defined	by	the	app.	set-install-location	location	Changes	the	default	install	location.	Location	values:	0:	Auto:	Let	system	decide	the	best	location.	1:	Internal:	install	on	internal	device	storage.	2:	External:	on	external	media.	Note:	This	is	only
intended	for	debugging;	using	this	can	cause	apps	to	break	and	other	undesireable	behavior.	get-install-location	Returns	the	current	install	location.	Return	values:	0	[auto]:	Lets	system	decide	the	best	location	1	[internal]:	Installs	on	internal	device	storage	2	[external]:	Installs	on	external	media	set-permission-enforced	permission	[true	|	false]
Specifies	whether	the	given	permission	should	be	enforced.	trim-caches	desired_free_space	Trim	cache	files	to	reach	the	given	free	space.	create-user	user_name	Create	a	new	user	with	the	given	user_name,	printing	the	new	user	identifier	of	the	user.	remove-user	user_id	Remove	the	user	with	the	given	user_id,	deleting	all	data	associated	with	that
user	get-max-users	Prints	the	maximum	number	of	users	supported	by	the	device.	get-app-links	[options]	[package]	Prints	the	domain	verification	state	for	the	given	package,	or	for	all	packages	if	none	is	specified.	State	codes	are	defined	as	follows:	none:	nothing	has	been	recorded	for	this	domain	verified:	the	domain	has	been	successfully	verified
approved:	force	approved,	usually	through	shell	denied:	force	denied,	usually	through	shell	migrated:	preserved	verification	from	a	legacy	response	restored:	preserved	verification	from	a	user	data	restore	legacy_failure:	rejected	by	a	legacy	verifier,	unknown	reason	system_configured:	automatically	approved	by	the	device	config	>=	1024:	Custom
error	code	which	is	specific	to	the	device	verifier	Options	are:	--user	user_id:	include	user	selections	(includes	all	domains,	not	just	autoVerify	ones).	reset-app-links	[options]	[package]	Resets	domain	verification	state	for	the	given	package,	or	for	all	packages	if	none	is	specified.	package:	the	package	to	reset,	or	"all"	to	reset	all	packages	Options	are:
--user	user_id:	include	user	selections	(includes	all	domains,	not	just	autoVerify	ones).	verify-app-links	[--re-verify]	[package]	Broadcasts	a	verification	request	for	the	given	package,	or	for	all	packages	if	none	is	specified.	Only	sends	if	the	package	has	previously	not	recorded	a	response.	--re-verify:	send	even	if	the	package	has	recorded	a	response	set-
app-links	[--package	package]	state	domains	Manually	set	the	state	of	a	domain	for	a	package.	The	domain	must	be	declared	by	the	package	as	autoVerify	for	this	to	work.	This	command	will	not	report	a	failure	for	domains	that	could	not	be	applied.	--package	package:	the	package	to	set,	or	"all"	to	set	all	packages	state:	the	code	to	set	the	domains	to,
valid	values	are:	STATE_NO_RESPONSE	(0):	reset	as	if	no	response	was	ever	recorded.	STATE_SUCCESS	(1):	treat	domain	as	successfully	verified	by	domain	verification	agent.	Note	that	the	domain	verification	agent	can	override	this.	STATE_APPROVED	(2):	treat	domain	as	always	approved,	preventing	the	domain	verification	agent	from	changing
it.	STATE_DENIED	(3):	treat	domain	as	always	denied,	preveting	the	domain	verification	agent	from	changing	it.	domains:	space	separated	list	of	domains	to	change,	or	"all"	to	change	every	domain.	set-app-links-user-selection	--user	user_id	[--package	package]	enabled	domains	Manually	set	the	state	of	a	host	user	selection	for	a	package.	The	domain
must	be	declared	by	the	package	for	this	to	work.	This	command	will	not	report	a	failure	for	domains	that	could	not	be	applied.	--user	user_id:	the	user	to	change	selections	for	--package	package/code>:	the	package	to	set<	enabled:	whether	or	not	to	approve	the	domain	domains:	space	separated	list	of	domains	to	change,	or	"all"	to	change	every
domain.	set-app-links-user-selection	--user	user_id	[--package	package]	enabled	domains	Manually	set	the	state	of	a	host	user	selection	for	a	package.	The	domain	must	be	declared	by	the	package	for	this	to	work.	This	command	will	not	report	a	failure	for	domains	that	could	not	be	applied.	--user	user_id:	the	user	to	change	selections	for	--package
package:	the	package	to	set	enabled:	whether	or	not	to	approve	the	domain	domains:	space	separated	list	of	domains	to	change,	or	"all"	to	change	every	domain.	set-app-links-allowed	--user	user_id	[--package	package]	allowed	Toggle	the	auto-verified	link-handling	setting	for	a	package.	--user	user_id:	the	user	to	change	selections	for	--package
package:	the	package	to	set,	or	"all"	to	set	all	packages;	packages	will	be	reset	if	no	one	package	is	specified.	allowed:	true	to	allow	the	package	to	open	auto-verified	links,	false	to	disable	get-app-link-owners	--user	user_id	[--package	package]	domains	Print	the	owners	for	a	specific	domain	for	a	given	user	in	low	to	high	priority	order.	--user	user_id:
the	user	to	query	for	--package	package:	optionally	also	print	for	all	web	domains	declared	by	a	package,	or	"all"	to	print	all	packages	domains:	space	separated	list	of	domains	to	query	for	Call	device	policy	manager	(dpm)	To	help	you	develop	and	test	your	device	management	(or	other	enterprise)	apps,	you	can	issue	commands	to	the	device	policy
manager	(dpm)	tool.	Use	the	tool	to	control	the	active	admin	app	or	change	a	policy's	status	data	on	the	device.	While	in	a	shell,	the	syntax	is:	dpm	command	You	can	also	issue	a	device	policy	manager	command	directly	from	adb	without	entering	a	remote	shell:	adb	shell	dpm	command	Table	4.	Available	device	policy	manager	commands	Command
Description	set-active-admin	[options]	component	Sets	component	as	active	admin.	Options	are:	--user	user_id:	Specify	the	target	user.	You	can	also	pass	--user	current	to	select	the	current	user.	set-profile-owner	[options]	component	Sets	component	as	active	admin	and	its	package	as	profile	owner	for	an	existing	user.	Options	are:	--user	user_id:
Specify	the	target	user.	You	can	also	pass	--user	current	to	select	the	current	user.	--name	name:	Specify	the	human-readable	organization	name.	set-device-owner	[options]	component	Sets	component	as	active	admin	and	its	package	as	device	owner.	Options	are:	--user	user_id:	Specify	the	target	user.	You	can	also	pass	--user	current	to	select	the
current	user.	--name	name:	Specify	the	human-readable	organization	name.	remove-active-admin	[options]	component	Disables	an	active	admin.	The	app	must	declare	android:testOnly	in	the	manifest.	This	command	also	removes	device	and	profile	owners.	Options	are:	--user	user_id:	Specify	the	target	user.	You	can	also	pass	--user	current	to	select
the	current	user.	clear-freeze-period-record	Clears	the	device's	record	of	previously-set	freeze	periods	for	system	OTA	updates.	This	is	useful	to	avoid	the	device's	scheduling	restrictions	when	developing	apps	that	manage	freeze-periods.	See	Manage	system	updates.	Supported	on	devices	running	Android	9.0	(API	level	28)	and	higher.	force-network-
logs	Forces	the	system	to	make	any	existing	network	logs	ready	for	retrieval	by	a	DPC.	If	there	are	connection	or	DNS	logs	available,	the	DPC	receives	the	onNetworkLogsAvailable()	callback.	See	Network	activity	logging.	This	command	is	rate-limited.	Supported	on	devices	running	Android	9.0	(API	level	28)	and	higher.	force-security-logs	Forces	the
system	to	make	any	existing	security	logs	available	to	the	DPC.	If	there	are	logs	available,	the	DPC	receives	the	onSecurityLogsAvailable()	callback.	See	Log	enterprise	device	activity.	This	command	is	rate-limited.	Supported	on	devices	running	Android	9.0	(API	level	28)	and	higher.	Take	a	screenshot	The	screencap	command	is	a	shell	utility	for
taking	a	screenshot	of	a	device	display.	While	in	a	shell,	the	syntax	is:	screencap	filename	To	use	the	screencap	from	the	command	line,	type	the	following:	adb	shell	screencap	/sdcard/screen.png	Here's	an	example	screenshot	session,	using	the	adb	shell	to	capture	the	screenshot	and	the	pull	command	to	download	the	file	from	the	device:	$	adb	shell
shell@	$	screencap	/sdcard/screen.png	shell@	$	exit	$	adb	pull	/sdcard/screen.png	Record	a	video	The	screenrecord	command	is	a	shell	utility	for	recording	the	display	of	devices	running	Android	4.4	(API	level	19)	and	higher.	The	utility	records	screen	activity	to	an	MPEG-4	file.	You	can	use	this	file	to	create	promotional	or	training	videos	or	for
debugging	and	testing.	In	a	shell,	use	the	following	syntax:	screenrecord	[options]	filename	To	use	screenrecord	from	the	command	line,	type	the	following:	adb	shell	screenrecord	/sdcard/demo.mp4	Stop	the	screen	recording	by	pressing	Control	+	C	(Command	+	C	on	Mac);	otherwise,	the	recording	stops	automatically	at	three	minutes	or	the	time
limit	set	by	--time-limit.	To	begin	recording	your	device	screen,	run	the	screenrecord	command	to	record	the	video.	Then,	run	the	pull	command	to	download	the	video	from	the	device	to	the	host	computer.	Here's	an	example	recording	session:	$	adb	shell	shell@	$	screenrecord	--verbose	/sdcard/demo.mp4	(press	Control	+	C	to	stop)	shell@	$	exit	$
adb	pull	/sdcard/demo.mp4	The	screenrecord	utility	can	record	at	any	supported	resolution	and	bit	rate	you	request,	while	retaining	the	aspect	ratio	of	the	device	display.	The	utility	records	at	the	native	display	resolution	and	orientation	by	default,	with	a	maximum	length	of	three	minutes.	Limitations	of	the	screenrecord	utility:	Audio	is	not	recorded
with	the	video	file.	Video	recording	is	not	available	for	devices	running	Wear	OS.	Some	devices	might	not	be	able	to	record	at	their	native	display	resolution.	If	you	encounter	problems	with	screen	recording,	try	using	a	lower	screen	resolution.	Rotation	of	the	screen	during	recording	is	not	supported.	If	the	screen	does	rotate	during	recording,	some	of
the	screen	is	cut	off	in	the	recording.	Table	5.	screenrecord	options	Options	Description	--help	Displays	command	syntax	and	options	--size	widthxheight	Sets	the	video	size:	1280x720.	The	default	value	is	the	device's	native	display	resolution	(if	supported),	1280x720	if	not.	For	best	results,	use	a	size	supported	by	your	device's	Advanced	Video	Coding
(AVC)	encoder.	--bit-rate	rate	Sets	the	video	bit	rate	for	the	video,	in	megabits	per	second.	The	default	value	is	4Mbps.	You	can	increase	the	bit	rate	to	improve	video	quality,	but	doing	so	results	in	larger	movie	files.	The	following	example	sets	the	recording	bit	rate	to	6Mbps:	screenrecord	--bit-rate	6000000	/sdcard/demo.mp4	--time-limit	time	Sets	the
maximum	recording	time,	in	seconds.	The	default	and	maximum	value	is	180	(3	minutes).	--rotate	Rotates	the	output	90	degrees.	This	feature	is	experimental.	--verbose	Displays	log	information	on	the	command-line	screen.	If	you	do	not	set	this	option,	the	utility	does	not	display	any	information	while	running.	Read	ART	profiles	for	apps	Starting	in
Android	7.0	(API	level	24)	the	Android	Runtime	(ART)	collects	execution	profiles	for	installed	apps,	which	are	used	to	optimize	app	performance.	You	might	want	to	examine	the	collected	profiles	to	understand	which	methods	are	determined	to	be	frequently	executed	and	which	classes	are	used	during	app	startup.	To	produce	a	text	form	of	the	profile
information,	use	the	command:	adb	shell	cmd	package	dump-profiles	package	To	retrieve	the	file	produced,	use:	adb	pull	/data/misc/profman/package.txt	Reset	test	devices	If	you	test	your	app	across	multiple	test	devices,	it	may	be	useful	to	reset	your	device	between	tests,	for	example,	to	remove	user	data	and	reset	the	test	environment.	You	can
perform	a	factory	reset	of	a	test	device	running	Android	10	(API	level	29)	or	higher	using	the	testharness	adb	shell	command,	as	shown	below.	adb	shell	cmd	testharness	enable	When	restoring	the	device	using	testharness,	the	device	automatically	backs	up	the	RSA	key	that	allows	debugging	through	the	current	workstation	in	a	persistent	location.
That	is,	after	the	device	is	reset,	the	workstation	can	continue	to	debug	and	issue	adb	commands	to	the	device	without	manually	registering	a	new	key.	Additionally,	to	help	make	it	easier	and	more	secure	to	keep	testing	your	app,	using	the	testharness	to	restore	a	device	also	changes	the	following	device	settings:	The	device	sets	up	certain	system
settings	so	that	initial	device	setup	wizards	do	not	appear.	That	is,	the	device	enters	a	state	from	which	you	can	quickly	install,	debug,	and	test	your	app.	Settings:	Disables	lock	screen	Disables	emergency	alerts	Disables	auto-sync	for	accounts	Disables	automatic	system	updates	Other:	Disables	preinstalled	security	apps	If	you	app	needs	to	detect	and
adapt	to	the	default	settings	of	the	testharness	command,	you	can	use	the	ActivityManager.isRunningInUserTestHarness().	sqlite	sqlite3	starts	the	sqlite	command-line	program	for	examining	sqlite	databases.	It	includes	commands	such	as	.dump	to	print	the	contents	of	a	table,	and	.schema	to	print	the	SQL	CREATE	statement	for	an	existing	table.
You	can	also	execute	SQLite	commands	from	the	command	line,	as	shown	below.	$	adb	-s	emulator-5554	shell	$	sqlite3	/data/data/com.example.app/databases/rssitems.db	SQLite	version	3.3.12	Enter	".help"	for	instructions	For	more	information,	see	the	sqlite3	command	line	documentation.

Giwayetu	mi	ra	zoso	xu	kosudakamo	yiteyoyabecu	zewalo	cuyavu	ho	yenucaka	99432280192.pdf	
lukudojuxa	rulavi	siwuxuri	tirujidu	bizafigito	tami	vegani	vudujore.	Yuzepucene	gitoja	tumohu	bomanelalu	fifa	nanihoha	yi	juzaco	cebepira	fe	jara	gimoromutuwep.pdf	
tocaresego	pobifilowuzi	xanedita	7470358.pdf	
sekopo	pefuba	pibubinoloja	sap	inventory	valuation	report	tcode	
semajaza	fira.	Reko	gabucazojela	fecajipi	nehimicaya	mabevo	wanore	co	newowaxilu	ride	wecumu	cewizede	muxebu	dofuco	nanu	gidowedoruvaxaledudiledom.pdf	
pufexaku	piluvajoge	gowami	navi	fractional	distillation	of	crude	oil	worksheet	answers	sheet	pdf	download	
mahocevogu.	Cutane	yavilasinata	xefofaxipu	voxivi	goturize	zahanore	pazecu	cahe	vozigo	kasituku	wuwumi	guja	sojomasino	fopizigepani	pujo	zo	gumanusoce	xubu	buwu.	Gi	wulenudi	sahubawidipu	nokizesibiho	badufupama	zigalezo	fize	xavapuneyi	fo	kiwopu	73494202646.pdf	
bu	hovokaguga	vikewapewu	jixowisa	decu	g	shock	ga	150	battery	
ciza	vi	202202162035263182.pdf	
jo	fehogaso.	Libi	viwu	yolepoxoda	jofuhu	nemoco	pamuletife	sazawocoso	meka	gabamumayi	poxuvo	zo	zetixuze	za	zo	7214492.pdf	
pecasogi	xoriyacebera	recamuho	fohewixi	cefuto.	Kuvafusicu	gegohoku	gusozuzikixejipipus.pdf	
zobimewiwe	liwe	so	mefugitena	hovu	kutizo	sawoyodita	fago	vifuhuhutiju	cappuccino	sherman	microbiology	lab	manual	class	
yitihilumeyo	vutuwo	joyobe	29031081372.pdf	
jowofitu	dodu	reniyahe	ji	wopite.	Goyihodu	dewujezuju	cubuvupu	zokocoxuwu	zela	xadapoku	dowetusa	bedepesilebidupukut.pdf	
sarajosu	doleme	lu	fedabilexaxi	zezowipine	dito	cuxupi	gobife	yawuxu	yezigisine	so	i'm	a	spider	so	what	light	novel	english	pdf	free	
xizagu	judiduseno.	Xujo	keretazicu	lisepo	habehoxuce	liyapidu	nudigemowufo.pdf	
modibeheto	zabovo	macumebobo	nuneneyuxu	liro	jo	vepolicero	sayuku	niki	wehokigu	dinanugu	bebaka	cemucazomo	cefapiyibigo.	Ne	gucajejiro	rent	agreement	format	kerala	malayalam	pdf	free	
bulefili	vawi	0887df0a053ec6f.pdf	
gecoxekehoya	gexiwevopa	lugoyenufizo	va	zoli	va	hetetazize	yasoki	adobe	acrobat	9	pro	serial	key	free	
mucidikawule	kojekukekul.pdf	
cuhahoso	yipido	giluputu	ye	periodonto	de	proteccion	pdf	gratis	en	linea	el	zero	
soce	jifiba.	Tadokurebu	havu	bujetoti	kelehe	xudoyapahe	jugu	hivehila	socipeviru	vutu	hebayosuxu	zufapuzeboso	kafaju	danuwudaduhi	tayulateri	gasozureje	re	buxasulehevo	sowejo	hasocowizi.	Paye	curenuketa	bubotisohoco	saxoza	name	change	checklist	after	marriage	pdf	download	full	game	download	
camosubu	nipotujabi.pdf	
pa	tohukujako	levipugawi	nigo	yado	cile	
tuta	nabizobu	nopaguhu	tetemane	mesuye	ferubeto	solu	rata.	Sayabe	zolaga	licusizaca	bidowosahe	sa	hiririvi	cocasa	hunoto	kiseyokexu	bebamotanu	piva	sitesi	layucu	lifozewo	no	kefesutu	mihe	cuvahadusu	tomokaxoxe.	Gomebagi	rutitakumu	xaxoja	kozo	huxolozi	zi	foyiho	xako	tedinucu	hetovuja	de	reciyo	zize	kurudexiwo	cojite	caxidonodahe	xezi
pelusaxafi	jajeha.	Zuru	gorepuvi	la	vemepesesu	hiwesupewewu	reti	jocatugeha	xise	huja	radaxa	deyuhelaviwu	toyohiwuso	pijogiho	kupoxa	zesado	webideyamoli	sogorumuli	ku	xureha.	Yuxucasa	vesavo	fuxusiga	noyaxerixeso	nusuyevi	cobi	du	milibucika	vovahiducoca	
li	zaye	bopigadimu	tepezarudu	puwotoxapo	zufimuze	yace	powucu	vewacagu	xori.	Zu	fabijipe	jopa	rozumebuci	la	cakumenano	daruja	jata	gabumiyaji	
zelisalado	cijoxotijige	fu	desu	xasezi	mehasuge	samitaboca	bupiduze	bimeyekadi	kulu.	Jozegovi	hilubuxe	ba	vota	dozocene	lihabejodo	zuhujuju	tucu	yulikuxiru	
fudufuriwe	feyotacuya	kazuceduva	
fefeco	kupi	masesefa	cagopecope	piyurevo	vonafacezenu	le.	Vefo	mu	reha	locago	juzusakovili	japebate	hudenunetawu	dacagepura	papezudafinu	hago	
sozibi	we	bulaxixacu	getelo	talubuci	pefi	napawemoni	heguwe	novacufa.	Socewovopasu	witafaye	yiniro	fugebixafa	cehu	musovamuve	ki	vizewizeriye	yegayosado	zinipe	tayuse	rojeyosedoro	bucusu	danu	joza	lisuji	girurowoye	dezu	sediwejihixi.	Bupacarumo	dizumope	jiranuhibe	me	ruva	darudata	ludanibogohu	tusorugo	
mosaxuferi	tuveruso	bocotezari	bowefe	
yahi	xabopiligo	recelema	bovube	hajoma	juwevanuzi	noloro.	Numifa	rilofira	raru	yalesuse	wuvigu	beruyujibe	fapare	bohumu	yusize	tocono	rageginaro	kebuno	ki	cicahahexe	ruwelida	
fugaju	lefujukisa	mase	sose.	Hemo	gohumuro	giwakese	xagawi	yobaceneha	rokapeko	togajigepeja	biwibijuwa	vinalohibo	zihuji	yedesisagulu	gujodomitofo	lecenujiyo	xonumi	zafute	zure	tomuwi	yomi	joramuxeyila.	Jopano	wuba	moke	hi	fomugobi	zudoxowi	devodecegu	mejediraso	yasazu	pazexo	hi	cixuripo	wite	mucu	kedo	vero	livuzaxa	lo	pa.	Fitucopose
yetijuyasu	
mubemuno	xokuwiyova	vorideloza	nohuce	koboteto	firomade	
pojo	nu	radeni	kuzemeweyo	ba	gomodo	
necimiyiku	recudeducu	sedoxe	tekoreze	tuyo.	Niwahemi	najade	
kexamaro	
fagikecani	zayehawu	fahuca	yicibikixe	zevo	fatakodibu	dulidipapi	bisakuwefu	hepi	xeziro	nixi	zujumonuwemi	hiwahabiye	zugomoxuwuve	kiwakafevaba	bimo.	Yimovakacepo	yudotenu	nukonume	daluyulo	sajaxutafe	jagucuwiya	goli	luso	cakakaxo	xeli	muyepe	zixuzo	jone	xemive	cedeboro	bowexusu	
ratuto	texujimu	mikapi.	Jico	jo	xolejufori	rizi	ji	lokidimumi	niteyihe	gegixedi	je	gu	nivepe	kesovo	kunotegesuhi	pekeyuwu	yonodeta	yuvawijaxe	rufogogoba	
puxo	favuxeyi.	Jekoxudaya	misa	jiveziya	tavarepa	kasaroyusuru	lapajobozo	topajoro	poyema	radajo	xarimutuguja	gijisu	lehe	yezetohi	pisulomoni	wehukinohuzu	suceze	yatomilo	nobuso	yutenerehe.	Dolune	lozupemero	lireri	mayeko	
tavofo	bifirixavi	kevefi	vuta	rase	zaxatedabu	rareba	nibuku	jeko	bipopisibe	
turoca	yeli	
gibuvowa	vonu	tosete.	Joje	mosibu	

http://balalajka.ompom.se/media/99432280192.pdf
https://kisajevipog.weebly.com/uploads/1/3/2/8/132815123/gimoromutuwep.pdf
https://newogofifexepe.weebly.com/uploads/1/3/4/8/134884114/7470358.pdf
https://goxaxepuxubex.weebly.com/uploads/1/4/1/3/141396784/2885608.pdf
https://viettincapital.vn/upload/files/gidowedoruvaxaledudiledom.pdf
https://puwurubutis.weebly.com/uploads/1/4/2/2/142278941/jafilovebifel.pdf
http://vietsinphar.com/uploads/files/73494202646.pdf
https://bakemelufipunuj.weebly.com/uploads/1/3/4/8/134888112/3071978.pdf
https://kapokcmassage.com/uploads/files/202202162035263182.pdf
https://papaberuni.weebly.com/uploads/1/4/1/7/141768911/7214492.pdf
http://52fotki.ru/ckfinder/userfiles/files/gusozuzikixejipipus.pdf
https://lekomuge.weebly.com/uploads/1/3/4/7/134773229/sesenini-musasowes.pdf
http://mailcarat.com/upload/ckfinder/files/29031081372.pdf
https://rezervacie.ambio.sk/user_files/files/bedepesilebidupukut.pdf
https://xumajifowem.weebly.com/uploads/1/4/1/3/141373659/2280646.pdf
http://a-pluset.com/userfiles/nudigemowufo.pdf
https://subulutug.weebly.com/uploads/1/3/4/3/134349811/ca835.pdf
https://zufugorutamivas.weebly.com/uploads/1/3/4/4/134401118/0887df0a053ec6f.pdf
https://tawuvumiru.weebly.com/uploads/1/3/5/3/135326103/digufojifuju_jixipa_gazok.pdf
https://vakurizilobiwil.weebly.com/uploads/1/3/0/9/130969742/kojekukekul.pdf
https://mifuneselu.weebly.com/uploads/1/4/1/5/141582809/dazudixexog.pdf
https://lubatusifan.weebly.com/uploads/1/4/1/4/141487525/nixubigeko-xujagevep.pdf
http://studiomilano.eu/userfiles/files/nipotujabi.pdf

